138 research outputs found

    On the Minimization of Convex Functionals of Probability Distributions Under Band Constraints

    Full text link
    The problem of minimizing convex functionals of probability distributions is solved under the assumption that the density of every distribution is bounded from above and below. A system of sufficient and necessary first-order optimality conditions as well as a bound on the optimality gap of feasible candidate solutions are derived. Based on these results, two numerical algorithms are proposed that iteratively solve the system of optimality conditions on a grid of discrete points. Both algorithms use a block coordinate descent strategy and terminate once the optimality gap falls below the desired tolerance. While the first algorithm is conceptually simpler and more efficient, it is not guaranteed to converge for objective functions that are not strictly convex. This shortcoming is overcome in the second algorithm, which uses an additional outer proximal iteration, and, which is proven to converge under mild assumptions. Two examples are given to demonstrate the theoretical usefulness of the optimality conditions as well as the high efficiency and accuracy of the proposed numerical algorithms.Comment: 13 pages, 5 figures, 2 tables, published in the IEEE Transactions on Signal Processing. In previous versions, the example in Section VI.B contained some mistakes and inaccuracies, which have been fixed in this versio

    Measuring Blood Glucose Concentrations in Photometric Glucometers Requiring Very Small Sample Volumes

    Full text link
    Glucometers present an important self-monitoring tool for diabetes patients and therefore must exhibit high accu- racy as well as good usability features. Based on an invasive, photometric measurement principle that drastically reduces the volume of the blood sample needed from the patient, we present a framework that is capable of dealing with small blood samples, while maintaining the required accuracy. The framework consists of two major parts: 1) image segmentation; and 2) convergence detection. Step 1) is based on iterative mode-seeking methods to estimate the intensity value of the region of interest. We present several variations of these methods and give theoretical proofs of their convergence. Our approach is able to deal with changes in the number and position of clusters without any prior knowledge. Furthermore, we propose a method based on sparse approximation to decrease the computational load, while maintaining accuracy. Step 2) is achieved by employing temporal tracking and prediction, herewith decreasing the measurement time, and, thus, improving usability. Our framework is validated on several real data sets with different characteristics. We show that we are able to estimate the underlying glucose concentration from much smaller blood samples than is currently state-of-the- art with sufficient accuracy according to the most recent ISO standards and reduce measurement time significantly compared to state-of-the-art methods

    Bayesian Nonparametric Feature and Policy Learning for Decision-Making

    Full text link
    Learning from demonstrations has gained increasing interest in the recent past, enabling an agent to learn how to make decisions by observing an experienced teacher. While many approaches have been proposed to solve this problem, there is only little work that focuses on reasoning about the observed behavior. We assume that, in many practical problems, an agent makes its decision based on latent features, indicating a certain action. Therefore, we propose a generative model for the states and actions. Inference reveals the number of features, the features, and the policies, allowing us to learn and to analyze the underlying structure of the observed behavior. Further, our approach enables prediction of actions for new states. Simulations are used to assess the performance of the algorithm based upon this model. Moreover, the problem of learning a driver's behavior is investigated, demonstrating the performance of the proposed model in a real-world scenario

    A Linear Programming Approach to Sequential Hypothesis Testing

    Full text link
    Under some mild Markov assumptions it is shown that the problem of designing optimal sequential tests for two simple hypotheses can be formulated as a linear program. The result is derived by investigating the Lagrangian dual of the sequential testing problem, which is an unconstrained optimal stopping problem, depending on two unknown Lagrangian multipliers. It is shown that the derivative of the optimal cost function with respect to these multipliers coincides with the error probabilities of the corresponding sequential test. This property is used to formulate an optimization problem that is jointly linear in the cost function and the Lagrangian multipliers and an be solved for both with off-the-shelf algorithms. To illustrate the procedure, optimal sequential tests for Gaussian random sequences with different dependency structures are derived, including the Gaussian AR(1) process.Comment: 25 pages, 4 figures, accepted for publication in Sequential Analysi

    A Compressed Sampling and Dictionary Learning Framework for WDM-Based Distributed Fiber Sensing

    Full text link
    We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a pre-processing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.Comment: Accepted for publication in Journal of the Optical Society of America A [ \copyright\ 2017 Optical Society of America.]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite

    Bayesian Nonparametric Unmixing of Hyperspectral Images

    Full text link
    Hyperspectral imaging is an important tool in remote sensing, allowing for accurate analysis of vast areas. Due to a low spatial resolution, a pixel of a hyperspectral image rarely represents a single material, but rather a mixture of different spectra. HSU aims at estimating the pure spectra present in the scene of interest, referred to as endmembers, and their fractions in each pixel, referred to as abundances. Today, many HSU algorithms have been proposed, based either on a geometrical or statistical model. While most methods assume that the number of endmembers present in the scene is known, there is only little work about estimating this number from the observed data. In this work, we propose a Bayesian nonparametric framework that jointly estimates the number of endmembers, the endmembers itself, and their abundances, by making use of the Indian Buffet Process as a prior for the endmembers. Simulation results and experiments on real data demonstrate the effectiveness of the proposed algorithm, yielding results comparable with state-of-the-art methods while being able to reliably infer the number of endmembers. In scenarios with strong noise, where other algorithms provide only poor results, the proposed approach tends to overestimate the number of endmembers slightly. The additional endmembers, however, often simply represent noisy replicas of present endmembers and could easily be merged in a post-processing step

    Theoretical Bounds in Minimax Decentralized Hypothesis Testing

    Full text link
    Minimax decentralized detection is studied under two scenarios: with and without a fusion center when the source of uncertainty is the Bayesian prior. When there is no fusion center, the constraints in the network design are determined. Both for a single decision maker and multiple decision makers, the maximum loss in detection performance due to minimax decision making is obtained. In the presence of a fusion center, the maximum loss of detection performance between with- and without fusion center networks is derived assuming that both networks are minimax robust. The results are finally generalized.Comment: Submitted to IEEE Trans. on Signal Processin
    corecore